Neural coding mechanisms underlying perceived roughness of finely textured surfaces.
نویسندگان
چکیده
Combined psychophysical and neurophysiological studies have shown that the perceived roughness of surfaces with element spacings of >1 mm is based on spatial variation in the firing rates of slowly adapting type 1 (SA1) afferents (mean absolute difference in firing rates between SA1 afferents with receptive fields separated by approximately 2 mm). The question addressed here is whether this mechanism accounts for the perceived roughness of surfaces with element spacings of <1 mm. Twenty triangular and trapezoidal gratings plus a smooth surface were used as stimulus patterns [spatial periods, 0.1-2.0 mm; groove widths (GWs), 0.1-2.0 mm; and ridge widths (RWs), 0-1.0 mm]. In the human psychophysical studies, we found that the following equation described the mean roughness magnitude estimates of the subjects accurately (0.99 correlation): 0.2 + 1.6GW - 0.5RW - 0.25GW(2). In the neurophysiological studies, these surfaces were scanned across the receptive fields of SA1, rapidly adapting, and Pacinian (PC) afferents, innervating the glabrous skin of anesthetized macaque monkeys. SA1 spatial variation was highly correlated (0.97) with human roughness judgments. There was no consistent relationship between PC responses and roughness judgments; PC afferents responded strongly and almost equally to all of the patterns. Spatial variation in SA1 firing rates is the only neural code that accounts for the perceived roughness of surfaces with finely and coarsely spaced elements. When surface elements are widely spaced, the spatial variation in firing rates is determined primarily by the surface pattern; when the elements are finely spaced, the variation in firing rates between SA1 afferents is determined by stochastic variation in spike rates.
منابع مشابه
Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness.
Tactile pattern recognition depends on form and texture perception. A principal dimension of texture perception is roughness, the neural coding of which was the focus of this study. Previous studies have shown that perceived roughness is not based on neural activity in the Pacinian or cutaneous slowly adapting type II (SAII) neural responses or on mean impulse rate or temporal patterning in the...
متن کاملA Variation Code Accounts for the Perceived Roughness of Coarsely Textured Surfaces
For decades, the dominant theory of roughness coding in the somatosensory nerves posited that perceived roughness was determined by the spatial pattern of activation in one population of tactile nerve fibers, namely slowly adapting type 1 (SA1) afferents. Indeed, the perceived roughness of coarsely textured surfaces tracks the spatial variation in SA1 responses - the degree to which response st...
متن کاملTactile roughness perception with a rigid link interposed between skin and surface.
Subjects made roughness judgments of textured surfaces made of raised elements, while holding stick-like probes or through a rigid sheath mounted on the fingertip. These rigid links, which impose vibratory coding of roughness, were compared with the finger (bare or covered with a compliant glove), using magnitude-estimation and roughness differentiation tasks. All end effectors led to an increa...
متن کاملNeural coding and the basic law of psychophysics.
There have been three main ideas about the basic law of psychophysics. In 1860, Fechner used Weber's law to infer that the subjective sense of intensity is related to the physical intensity of a stimulus by a logarithmic function (the Weber-Fechner law). A hundred years later, Stevens refuted Fechner's law by showing that direct reports of subjective intensity are related to the physical intens...
متن کاملCharacterisation of breast implant surfaces and correlation with fibroblast adhesion.
INTRODUCTION Capsular contracture formation is a common complication following breast augmentation surgery. Breast implant shells have either a smooth or a textured surface. Smooth surfaces demonstrate a higher incidence of contracture formation. The 3-dimensional surface of textured implants is thought to disrupt contractile forces and reduce capsular contracture rates. AIM To investigate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 17 شماره
صفحات -
تاریخ انتشار 2001